Fast Algorithms for the Solution of Stochastic Partial Differential Equations
نویسندگان
چکیده
Title of dissertation: FAST ALGORITHMS FOR THE SOLUTION OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS Christopher W. Miller, Doctor of Philosophy, 2012 Dissertation directed by: Professor Howard Elman Department of Computer Science Institute for Advanced Computer Studies We explore the performance of several algorithms for the solution of stochastic partial differential equations including the stochastic Galerkin method and the stochastic sparse grid collocation method. We also introduce a new method called the adaptive kernel density estimation (KDE) collocation method, which addresses some of the deficiencies present in other stochastic PDE solution methods. This method combines an adaptive sparse grid collocation method with KDE to optimally allocate stochastic degrees of freedom. Several components of this method can be computationally expensive, such as automatic bandwidth selection for the kernel density estimate, evaluation of the kernel density estimate, and computation of the coefficients of the approximate solution. Fortunately all of these operations are easily parallelizable. We present an implementation of adaptive KDE collocation that makes use of NVIDIA’s complete unified device architecture (CUDA) to perform the computations in parallel on graphics processing units (GPUs). FAST ALGORITHMS FOR THE SOLUTION OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملNumerical solution of nonlinear SPDEs using a multi-scale method
In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets. The method combines implicit collocation with the multi-scale method. Using the multi-scale method, SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain. The stability and c...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کامل